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We have studied damping in polycrystalline Al nanomechanical resonators by measuring the temperature
dependence of their resonance frequency and quality factor over a temperature range of 0.1–4 K. Two regimes
are clearly distinguished with a crossover temperature of 1 K. Below 1 K we observe a logarithmic temperature
dependence of the frequency and linear dependence of damping that cannot be explained by the existing
standard models. We attribute these phenomena to the effect of the two-level systems characterized by the
unexpectedly long �at least two orders of magnitude longer� relaxation times and discuss possible microscopic
models for such systems. We conclude that the dynamics of the two-level systems is dominated by their
interaction with one-dimensional phonon modes of the resonators.

DOI: 10.1103/PhysRevB.81.184112 PACS number�s�: 85.85.�j, 62.25.�g, 62.40.�i, 81.05.Bx

Nanoelectromechanical systems have recently attained a
lot of interest due to a variety of promising applications such
as ultrasensitive mass measurement1 and single-spin
detection2 as well as due to their suitability for doing
quantum-limited measurements.3–5 For this, nanomechanical
resonators with high resonance frequencies in combination
with high quality factors are required. So far, nanomechani-
cal resonators mostly made of single-crystal semiconductor
and dielectric materials have been studied, and frequencies
above 1 GHz with quality factors of about 500 have been
achieved.6 Low-temperature studies on such resonators re-
veal glasslike behavior7,8 and suggest that this may be due to
the interaction of the flexural beam modes with two-level
systems �TLSs�. Metallic beams can be fabricated using
technologies known for metallic nanoelectronic devices,
which therefore allow easy integration of mechanical degrees
of freedom into such devices. Although fabrication methods
for metallic beams of nanoscale size have been developed
recently,9,10 very little is known about loss mechanisms in
such beams. In this respect, understanding damping in nano-
scale mechanical resonators is of primary importance. In this
work we demonstrate that the quality factors of Al doubly
clamped beams at millikelvin temperatures are affected by
two-level systems. The observed temperature dependences of
damping and resonance frequency are characteristic for
amorphous materials with TLS relaxation due to one-
dimensional �1D� phonons. Such a dependence cannot be
interpreted within the standard TLS model11,12 and we pro-
pose an alternative explanation. The apparent similarity be-
tween amorphous insulators and polycrystalline metals and
their dramatic difference from amorphous metals implies a
different nature of TLS in metallic beams.

Doubly clamped beams are fabricated on an oxidized sili-
con substrate using a trilayer resist structure with an extra
sacrificial calixarene layer.10,13 The beam mask in Ge layer is
defined by electron-beam lithography and reactive ion etch-
ing. After metallization and lift-off process, the beams are
suspended by removing the underlying calixarene layer in an
oxygen plasma. The Al polycrystalline beams, with length l,
width w, and thickness t �see left inset of Fig. 1�, are con-

nected to the central line of prefabricated gold-patterned on-
chip coplanar waveguides which are ribbon bonded to co-
axial lines. The samples are mounted in vacuum space inside
the bore of a superconducting solenoid providing a trans-
verse magnetic field of up to 5 T. All measurements were
done in a dilution refrigerator with a base temperature down
to about 50 mK.

We characterize our beams using a conventional magne-
tomotive measurement scheme.14 The rf signal from the out-
put of the network analyzer is fed into the coaxial line at the
top of the cryostat and delivered to the chip through a 20 dB
attenuator at the 4 K stage. ac flowing through the beam in a
perpendicular external magnetic field B actuates the device
due to the Lorentz force. On resonance the beam dissipates
energy producing a dip in the transmitted signal which is
delivered via a second coaxial line to the room-temperature
preamplifier and then to the input of the network analyzer.
The power applied to the beams is low enough to keep them
in the linear regime, as seen from the resonances depicted in
Fig. 1 for the 5-�m-long beam. Electromotive force induced
on the beam is estimated from the measured transmission as
VEMF=�PZ, where P is the power difference in the transmit-
ted signal on and off resonance and Z=50 � is the imped-
ance of the high-frequency line. VEMF is related to the me-
chanical properties of the beam by

�VEMF�2 =
�fl2�B2I/�2�m��2

�f0
2 − f2�2 + �f0f/Q�2 �1�

with f0 the resonance frequency, 1 /Q the damping, f the
measurement frequency, m the mass of the resonator, B the
magnetic field, and �=0.831.14

Figure 2 shows the relative change in the resonance fre-
quency �f / f0

max for four beams of different dimensions, as a
function of temperature on a logarithmic scale. For each
trace, the frequency change is normalized to its maximum
resonance frequency f0

max. All the beams exhibit qualitatively
the same overall temperature dependence: the resonance fre-
quency reaches a maximum at about 1.5 K and decreases at
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higher and lower temperatures. Moreover, below this tem-
perature, the frequency decreases logarithmically down to
the lowest temperature that could be reached in our measure-
ments, for all four beams, although their slopes are different.
The beam resonance frequencies change with temperature
because of tension created due to the difference in coeffi-
cients of thermal expansion of Al and Si as shown as black
squares in the inset of Fig. 2. The red �gray� circles are a fit
using literature values for the thermal-expansion coefficients
of Al and Si �Ref. 15� with the beam dimensions as free
parameters. Reasonable agreement can be achieved for w
=118 nm, t=228 nm, and l=5 �m. Below 20 K the
thermal-expansion coefficients saturate and hence no fre-

quency change is expected. Therefore, the characteristic fre-
quency dependence at low temperature must be attributed to
a different mechanism as discussed below.

Figure 3 shows damping as a function of temperature for
the same range as in Fig. 2 but with a linear temperature
scale. Again, all four beams show qualitatively the same tem-
perature dependence. Damping increases linearly with tem-
perature up to about 1 K. Above this temperature it continues
to increase but with a significantly smaller slope.

Now we turn to the analysis of possible loss mechanisms
in Al beams. Damping 1 /Q can be divided into internal and
external as 1 /Q=1 /Qint+1 /Qext.

16 For the 5-�m-long beam,
the observed parabolic dependence of damping on magnetic
field �see inset of Fig. 1� is related to external losses 1 /Qext
in the measurement circuit, called magnetomotive damping
which is proportional to the motional impedance that scales
as B2. Therefore it dominates in high magnetic fields and
produces an overall parabolic dependence.16 This is con-
firmed by the parabolic fit to the experimental data between
1 and 5 T shown by the red �gray� line and extrapolated to
lower fields which yields 1 /Q=1 /Q�0T�+2.2�10−6B2 / �T�2.
This value has to be compared to the theoretical expected
value 1 /Qext=ZcRext / �Zext�2, where Zc is the impedance of the
beam and Rext the real part of the external impedance Zext.
We can reproduce the measured coefficient using Zext
=50 � and Rext=18 �. Below about 1 T, damping saturates
and deviates from the parabolic dependence, which may be
attributed to the contribution from the field-dependent losses
in the external circuit. Since we are interested in the intrinsic
or material-dependent loss mechanisms 1 /Qint, we subtract
the effect of magnetomotive damping from the measured val-
ues of 1 /Q for all beams. In addition, since magnetomotive
damping scales as 	l3, all measurements of the temperature
dependence for the 5-�m-long beam have been performed at
0.5 T.

Several intrinsic mechanisms discussed in the literature
can contribute to the dissipation in nanomechanical resona-
tors at low temperatures. Thermoelastic damping has been
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FIG. 1. �Color online� Amplitude of the induced electromotive
force of the 5 �m beam at B=0.5 T for different temperatures
�symbols�. The solid lines are Lorentzian fits. The right inset shows
damping 1 /Q of the same beam as a function of the magnetic field
�black squares�. The B2 dependence expected from magnetomotive
damping is shown as a fit �red �gray� line� to the experimental data.
The left inset presents a layout of the beams studied.

0.1 1 10
-30

-20

-10

0
= 40.5 MHz

δf
/f 0

x1
05

T [K]

m
ax

f0
= 110 MHzf0
= 187 MHzf0
= 360 MHzf0

30

40

f 0
[M
H
z]

T [K]
3001500

FIG. 2. �Color online� Relative shift of the resonance frequency
as a function of the temperature for different resonators �symbols�.
For each device the frequency shift is normalized to the maximum
resonance frequency f0

max. The dotted lines are logarithmic fits to
the measured data used to determine the values for C in Table I. The
inset shows the temperature dependence of f0 measured from room
temperature �black squares�. The red �gray� circles are a fit using
thermal-expansion coefficients from Ref. 15.
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FIG. 3. �Color online� Damping 1 /Qint as a function of tempera-
ture for four resonators of different lengths �symbols�. Damping
increases linearly up to 0.7–1.5 K followed by a weaker tempera-
ture dependence above this temperature. The dotted lines are linear
fits to the measured data used to determine the values for 
FU.
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shown to be negligible at high frequencies and low tempera-
tures and therefore does not play any role in the measure-
ments reported here.17 In metals, electron-phonon scattering
may also contribute to damping18 but its contribution in
polycrystalline metals can usually be neglected due to the
short mean-free path of electrons.19

Clamping loss is another contribution to damping of the
beams. It depends on the beam aspect ratio as �w / l�3 for
in-plane displacement,20 therefore this loss mechanism be-
comes significant for the beams with a high resonance fre-
quency, i.e., small aspect ratio, as can be seen in Table I.
However, this damping mechanism is not expected to show
any temperature dependence and therefore contributes to the
data shown in Fig. 3 only as a constant background without
affecting the slope. Ideally, the temperature dependence of
1 /Qint should be shifted up for shorter beams provided only
their length is changed. Such a tendency is observed in Fig.
3 for the three beams with the same width and thickness �see
data for beams with f0=40.5, 110, and 187 MHz�. Table I
shows that with the fabrication method utilized, a resonance
frequency as high as 770 MHz together with a quality factor
of 2400 have already been achieved. By optimizing the beam
dimensions, it should also be possible to push the resonance
frequency up to above 1 GHz while preserving a reasonably
high quality factor.

Qualitatively, the temperature dependence of the reso-
nance frequency and damping in our experiments looks simi-
lar to those observed in amorphous insulators where they are
attributed to two-level systems.11 In these materials the tem-
perature dependence of both the sound velocity and damping
display two regimes with a crossover temperature around
T��1 K. The low-temperature regime is characterized by a
logarithmic increase in the sound velocity with temperature
while the quality factor changes as a power law with tem-
perature. The crossover between the two regimes occurs
when the TLS relaxation rate � becomes approximately
equal to the measurement frequency �=2�f , which is close
to the beam resonance frequency in our experiments. One
expects that in amorphous metals the interaction of the TLS
with electrons is much stronger leading to a much larger
value of � so that the high-frequency �low-temperature� re-
gime is very difficult to observe, in agreement with the ex-
isting data.21,22 The situation in polycrystalline metals, such
as the samples studied in this work, is less clear. In particu-
lar, the naive expectation that the defects in these materials
should behave similarly to the ones in amorphous metals was
not confirmed experimentally. Instead, surprisingly, they be-
have more like defects in amorphous insulators.23 Our data

also confirm this fact and imply that the interaction of the
defects with conduction electrons is very small, in agreement
with Ref. 24.

For all mechanisms one expects that the sound velocity
changes logarithmically in the low-temperature regime,12

�f

f0
= C ln� T

T0
	 , �2�

where C is a dimensionless parameter that characterizes the
TLS interaction with sound waves and with each other: C
=
T
2 /E, where 
T is the TLS density of states, 
 is the
interaction constant, and E is the Young’s modulus. Remark-
ably, the value of C is known to be almost universal for all
amorphous materials, C�10−3–10−4.25 Our measurements
on polycrystalline Al samples give values of C
0.4–1.7
�10−4, consistent with this phenomenology.

In contrast, temperature dependence of damping is very
sensitive to the physics of TLS because it directly probes the
TLS relaxation rate,12

1/Q�T� 
 �C
�

�
� � ��T�

C � � ��T� .
� �3�

The observed linear temperature dependence of damping
below 1 K implies that all data below this temperature cor-
respond to the high-frequency regime ����T� and that �
	T. For this to be true, even the lowest resonance frequency
f0�40 MHz must be larger than the relaxation rate at T
�1 K. Note that the temperature-dependent part of damping
1 /Qint�T�−1 /Qint�0��0.5�10−4 is consistent with the re-
gime ����T�.

However, the conclusion ����T� is difficult to reconcile
with the electron mechanism of TLS relaxation because for
this mechanism ��=2��
FU�2kBT, where 
F is the electron
density of states and U is their interaction with TLS. Assum-
ing that this condition holds for f0=40 MHz and T=1 K
one would conclude that 
FU�0.01, which is much smaller
than one expects and observes for a conventional TLS in a
metal, 
FU=0.1–1.11 The difference between the tempera-
ture dependence of damping studied here and the one re-
ported for bulk polycrystalline Al samples also points toward
the phonon dominated relaxation.

This conclusion, however, is in a perfect agreement with
the phonon mechanism of TLS relaxation when one takes
into account the fact that for temperatures T�1 K the pho-
non wavelength in Al is ��0.25 �m so that at these tem-
peratures the studied beams are essentially one-dimensional

TABLE I. Physical parameters of Al resonators with different dimensions. The beam thickness is 0.2 �m
except for the narrow beams �w=0.06 �m� whose thickness is 0.1 �m. The resonance frequency f0 and the
quality factor Q are extracted at T=100 mK.

l�w ��m2� 5�0.1 3�0.1 2�0.1 1�0.06 0.6�0.06

f0 �MHz� 40.5 110 187 360 770

Q 120000 41000 16000 30000 2400

C 3�10−5 4�10−5 8�10−5 17�10−5


FU 0.05 0.09 0.08 0.09
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structures. The linear phonon spectrum26 implies a constant
density of states in a 1D system and therefore the TLS relax-
ation rate is expected �cf. Refs. 11, 12, and 27� to be ��
��a2 /wt�kBT, where a is the lattice constant. The ratio
�a2 /wt��10−5 naturally leads to the right order of magnitude
of the relaxation rate and its linear temperature dependence.
Unlike the phonon properties, however, the reduced dimen-
sionality of our resonators does not affect their electron prop-
erties or interaction with TLS. Note that the constant density
of states of phonons is a natural property of the one-
dimensional bridges studied here; it should not be confused
with the modification of the phonon spectrum proposed in
Ref. 23 in order to explain linear T behavior in three-
dimensional samples at very low temperatures. The phonon
density of states affects only weakly the temperature depen-
dence of the velocity �cf. similar conclusion in Ref. 27�.

We briefly mention here an alternative explanation that
extends the theory of Ref. 29 and attributes the linear T de-
pendence of the relaxation rate to collective modes appearing
due the interaction between different TLS. This mechanism,
however, is not expected to be efficient above 30 mK �Ref.
29� while our data show linear T behavior in a 0.1–1 K
range.

The apparent absence of the TLS-electron interaction in
polycrystalline materials points to a different origin of the
TLS in such materials. In amorphous insulators and metals,
the TLS are likely to be single atoms that tunnel atomic
distances between two positions. In crystals, a more likely
origin are kinks on dislocations.30 These kinks are very
smooth objects in soft metals �such as Au and Al� due to a
small value of the Peierls barrier and thus may interact very
weakly with the electrons.31

The conclusions reached above are based on the linear
temperature dependence of 1 /Qint�T� and constant C ex-
pected for conventional TLS. These assumptions must be
re-examined for TLS originating from smooth kinks on dis-
locations. For instance, interaction between the kinks in
strained samples may not be so small as between TLS be-
cause the external strain creates kinks until the interaction
becomes sufficient to balance the strain. Such interaction
may suppress the density of states at low energies similar to
spin-glass physics.32 However, a typical model predicting
suppression of the density of states and a strong linear
T-dependence damping would also give a sound velocity
change different from Eq. �2�.

Observation of a single TLS and study of its dynamics in
polycrystalline materials would be the most direct way to
identify mechanisms discussed above. Alternatively, one can
probe the interaction with electrons by studying the effect of
superconductivity on the TLS relaxation rate and 1 /Qint�T�
for high frequencies such as the ones employed in these ex-
periments.

In conclusion we have reported measurements of the tem-
perature dependence of damping and the resonance fre-
quency of the fundamental mode of doubly clamped metallic
nanomechanical resonators. Our data indicate that these are
dominated by unconventional TLS with a long relaxation
time which can be associated with dislocation kinks.
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